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Sensitivity to perturbations in a quantum chaotic billiard
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The Loschmidt echo~LE! measures the ability of a system to return to the initial state after a forward
quantum evolution followed by a backward perturbed one. It has been conjectured that the echo of a classically
chaotic system decays exponentially, with a decay rate given by the minimum between the widthG of the local
density of states and the Lyapunov exponent. As the perturbation strength is increased one obtains a crossover
between both regimes. These predictions are based on situations where the Fermi golden rule~FGR! is valid.
By considering a paradigmatic fully chaotic system, the Bunimovich stadium billiard, with a perturbation in a
regime for which the FGR manifestly does not work, we find a crossover fromG to Lyapunov decay. We find
that, challenging the analytic interpretation, these conjectures are valid even beyond the expected range.
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Hypersensitivity to initial conditions is the key ingredie
of classical chaos. In quantum mechanics, its absence le
the study of other features that could be associated with
chaos of the corresponding classical system. Celebrated
amples are the Gutzwiller trace formula for the quant
spectral density, the description of the spectral fluctuati
by the random matrix theory, and the relation of spec
correlations to transport@1,2#.

In an alternative point of view, Peres@3# suggested tha
quantum dynamics should distinguish regular and irregu
classical dynamics if the time evolution of an initial state f
slightly different Hamiltonians are compared. That is, t
sensitivity of a quantum system should be searched no
changing the initial conditions but rather by perturbing t
Hamiltonian. The natural quantity for this investigation is t
ability of the system to return to the initial stateuf& after
being evolved with a HamiltonianH0 for a periodt followed
by an identical period of unitary evolution with2H1
52(H01S). This defines the quantum Loschmidt ec
~LE!

M ~ t !5 z^fuexp@ iH1t/\#exp@2 iH0t/\#uf& z2. ~1!

The perturbationS can represent the uncontrolled degrees
freedom of an environment. As in classical chaos, the LE
related to a ‘‘distance’’ between a perturbed and an unp
turbed evolution of the same initial state.

In recent years new hints were available due to the
vances in nuclear magnetic resonance. The LE was meas
in a many-bodysystem of interacting spins@4# in a range
where it is known to have spectral signatures of chaos
striking finding was that when interactions with the enviro
ment and residual interactions are very weak, the deca
M (t) becomes independent of the perturbation strength
this situation, it depends on the dynamical scales of the
tems, i.e., onH0. While the complexity of the experimenta
system did not allow for a derivation of the characteris
time for these specific system, Jalabert and Pastawsk@5#
studied the LE in aone-bodyclassically chaotic Hamiltonian
with a perturbation represented by a long range quenc
disordered potential. They have showed analytically t
1063-651X/2002/65~5!/055206~4!/$20.00 65 0552
to
e
x-

s
l

r

y

f
is
r-

-
red

A
-
of
In
s-

ed
t

M (t) may decay exponentially with a rate given by th
Lyapunov exponent of the classical system. As a conditi
the perturbation must be quantically strong to produce sta
tically unpredictable changes in the quantum phase but w
enough to leave the underlying classical dynamics un
turbed.

More recently, Jacquod, Silvestrov, and Beenakker@6#
predicted a crossover from a perturbation-dependent reg
to the Lyapunov one. However, this prediction is based
the strong assumption that the perturbation lives in a Fe
golden rule~FGR! regime, i.e., the local density of state
~LDOS! is a Breit-Wigner distribution whose widthG varies
quadratically with the perturbation strength. In this situatio
M (t) for a wave packet and the survival probability of a
unperturbed eigenstate have a decay rate given byG. Both
observables would describe the same physics if the corr
tion between states forming the wave packet could be
glected.

Our aim is to determine whether the perturbatio
independent Lyapunov regime and the crossover fromG
decay are possible in a fully chaotic system with a cle
semiclassical description where the presence of the pertu
tion is not described by the FGR. This occurs when there
strong correlations that could be related to classical str
tures which prevents a description in terms of a random m
trix theory. This perturbation is then said to benongeneric
@7# and the LDOS can be very different from the Lorentzi
analyzed in Ref.@6#. Our positive answer in such a cas
opens the question of a semiclassical interpretation for
weak perturbation regime.

We consider the paradigmatic desymmetrized Bunim
ich stadium billiard@8#. It consists of a free particle inside
two-dimensional planar region whose boundaryC is shown
in Fig. 1. The radiusr is taken equal to unity and the en
closed area is 11p/4. This system not only has a great e
perimental relevance@9,10#, but also it is a fully chaotic one
by oposition to the system considered in Ref.@6#. Besides, it
can rule out the diffusive effect of disorder suspected to
fect the behavior ofM (t) in a Lorentz gas@11#. The classical
dynamics is completely defined once the boundary is giv
On the other hand, to address the quantum mechanics,
©2002 The American Physical Society06-1
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necessary to solve the Helmholtz equation,¹2fm5k2fm
with appropriate boundary conditions.km is the wave num-
ber and by setting\52m51, km

2 results the energy. The
most commonly used boundary conditions are the Dirich
~hard walls! and the Neumann~acoustics! conditions. How-
ever, we are interested in the possibility of perturbing
quantum system without breaking the orthogonal symme
and leaving the classical motion undisturbed@2#. This is pos-
sible using more generalized boundary conditions:

f~q!1jg~q!
]f

]n
~q!50, ~2!

whereq is a coordinate along the boundary of the billia
~see Fig. 1!, andn is the unit vector normal to the boundar
g(q) is a real function andj the parameter controlling th
strength of the perturbation. Dirichlet boundary conditio
are recovered whenj50 while Neumann conditions are sa
isfied in the limit j→`. The eigenfunctions and eigenene
gies for the casej50 are readily obtained by using the sca
ing method@12#.

In order to compute the LE in this system, a relation b
tween the eigenvalues and eigenfunctions for different va
of the parameterj is needed. Based on a recently develop
Hamiltonian expansion for deformed billiards@13#, it is easy
to show that the eigenvalues and eigenfunctions for differ
values of the parameterj can be obtained from the Hami
tonian H01S(j) which is expressed in the basis of eige
states atj50 ~from now on we will callfm to these eigen-
states!,

Smn5jFmn RC
g~q!

]fm

]n

]fn

]n
dq. ~3!

The functiong(q) measures the strength of the change in
boundary condition along the contour. Within a perturbat

FIG. 1. Spectrum of the desymmetrized stadium billiard w
mixed boundary conditions controlled by the parameterj @Eq. ~3!#.
The wave numberskm(j) run between 49.3 and 50.7. Inset: Sch
matic figure of the system. The solid line shows the boundary of
stadium billiard where the mixed boundary conditions are app
@Eq. ~2!#. The coordinateq on the boundary is also shown. Dash
lines correspond to the symmetries axis with Dirichlet bound
conditions.
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theory it would represent the direction and strength of a d
tortion of the stadium@13#. Here we use

g~q!5H a, 0<q<1,

~11a!sin~q21!1a, 1,q<11p/2

with a521/(21p/2) that could be assimilated to a dilatio
along the horizontal axis and a contraction along the perp
dicular one. Notice that the integral above could be view
as an inner product among the wave functions]fm /]n de-
fined overC. This relation defines an effective Hilbert spa
in a window Dk' perimeter/area@13#. The cutoff function
Fmn5exp@22(km

22kn
2)2/(k0Dk)2# restricts the effect of the

perturbation to states in this energy shell of widthB
.k0Dk . It allows us to deal with a basis of finite dimensio
with wave numbers around the mean valuek0 and restricts to
a particular regionDk of interest.

Figure 1 shows the dependence of the energy levels on
perturbation. They exhibit many avoided crossings asj is
varied. While the energy levels show the typical behavior
a general system without constants of motion, we also r
ognize that some small avoided crossings are situated a
parallel tilted lines. These energies correspond to the w
known ‘‘bouncing ball’’ states which are highly localized i
momentum. The selected perturbation does not modify s
stantially those states.

Since the LE is a classically motivated quantity, a Gau
ian wave packet~with a mean value of momentumk0 and
velocity v0) is a proper semiclassical selection for an init
condition. By evaluating its evolution in a system witho
perturbation (j50) and other with perturbation strengthj,
we compute the LE@Eq. ~1!# as a function of time. At this
point one must recognize that the choice of a semiclass
initial condition is very relevant in order to observe th
‘‘Lyapunov’’ regime @14,6#.

While a global exponential decay ofM (t) can be clearly
identified in almost any individual initial condition, the fluc
tuations for a system withk0 not too large can introduce
error in the estimation of the rate. Hence, we have taken
average over 30 initial states. Figures 2~a! and 2~b! show

e
d

y

FIG. 2. M (t) for the desymmetrized stadium billiard perturbe
by a change in the boundary conditions. The calculations are sh
in two different energy regions.~a! corresponds to the region
aroundk0550. The value ofj is, from the top curve to the bottom
0.019, 0.038, 0.057, 0.075, 0.094, 0.11, 0.13, 0.15, and 0.17~b!
corresponds to the region aroundk05100. The value ofj is, from
the top curve to the bottom: 0.0066, 0.0131, 0.020, 0.0262, 0.0
0.0393, 0.0458, 0.0524, 0.0589, 0.066, and 0.072. The thick l
correspond to an exponential decay with decay ratetf51/l.
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typical sets of curves ofM (t) for k0550 andk05100, re-
spectively. It can be seen that after a transient,M (t) decays
exponentially,;exp@2t/tf#. For j.jc.4.5/k the decay rate
tf becomes independent of the perturbation and 1/tf'l
with l the Lyapunov exponent of the classical syste
@15,16# in accordance with the conjecture. On the other ha
for large timesM (t) saturates to a finite valueM`'1/N with
N the effective dimension of the Hilbert space@3#.

According to Ref.@5# the chaos controlled decay appea
provided thatl.1/t̃ where l̃ 5vot̃ is the length over which
the perturbation changes the quantum phase~mean free path!
which, for a plane wave with wave numberk and velocity
vo . For a quenched disorder perturbation is evaluated fr
the FGR@5#

1

t̃k

5
2p

\
lim

h→01
(
k8

uSk8ku2
1

p

h/2

~Ek82Ek!
21~h/2!2

. ~4!

Reference@6# realized that in the opposite regime ofl

,1/t̃, the LE of an eigenstatesfm of H0 is just a survival
probability and must decay exponentially under the action
the perturbation,

z^fmuexp@ i ~H01S!t/\#ufm& z2;exp@2t/ t̃m#, ~5!

given by Eq.~4! for \/B,t,\/D (D the mean level spac
ing! @17#. The appearance of this FGR behavior requires t
a typical matrix elementU.^uSmn(j)u& typ. of the perturba-
tion to be U.D. The Fourier transform of Eq.~5! is the
local density of states~LDOS! which, although being dis-
crete, would present a Lorentzian envelope@18# of width G

51/t̃ . In Ref. @6# it is conjectured that this decay can dete
mine the LE decay with more general initial states. This
the regime controlled by the nondiagonal terms in the se
classical expansion@5#. Once the nondiagonal terms hav

FIG. 3. WidthG of the local density of states as a function of t
perturbation strengthj for k0550 ~filled circles! and k05100
~circles!. The solid lines are the best linear fit. Inset: Local dens
of statesP(r ) for different perturbations ink0550 (r is measured
in mean level spacing units!.
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decayed, one expects the chaos controlled decay of the d
onal ones will survive. This gives a crossover criterion f
the decay rate of the LE of 1/tf5min@G,l# as the perturba-
tive parameterj changes.

The LDOS is shown in Fig. 3 for three different pertu
bation strengths. In contrast to the case of Ref.@6# our dis-
tribution is not Lorentzian. This is related to the fact that t
used perturbation@the functiong(q)# does not connect al
different regions of phase space; for instance, the bounc
ball states are practically undisturbed byS determining the
nongeneric nature of the perturbation. In particular, we h
evaluated the widthG, showing the spreading of the unpe
turbed eigenstates when expressed in terms of the new o
The results show alinear dependence ofG on j shown in
Fig. 3; that is, we obtainG.0.36jk2. Moreover, taking into
account thatl.0.86k, the critical valuejc for the crossover
from the G regime to the Lyapunov one is expected atjc
52.4/k ~remember that from Fig. 2 it resultsjc'4.5/k).
Then, for our system, the criterium works with aG given by
the half width of the LDOS. This is shown in Fig. 4 wher
for perturbation strengthsj,4.5k21, the LE decays as
M (t)5exp@2t/tf#1/tf5G/2 for l.G/2.

These results contrast with the FGR dependence of 1tf
}j2 observed for weak perturbations. These are the Lore
gas with a perturbed effective mass@11#, the kicked top per-
turbed by a perpendicular delayed kick@6#, and the genera
chaotic system perturbed by a quenched disorder@5# where
random matrix theory describes@19# the G decay. In this
context, the linear dependence of 1/t̃ on j may be considered
as a further indicative that the physics of the LE decay can
very different from that described by Eq.~5! and that the
result of Ref.@6# has more general validity than expected.
the nonperturbative regime, before the Lyapunov expon
takes over, the LE decays exponentially with a rategiven by
the perturbation dependent width of the LDOS. Another im-
portant feature is thatjc.4.5/k→0 whenk→`. This con-
firms that in the classical limit Eq.~1! would decay with the
Lyapunov regime regardless of the magnitude ofS, recover-
ing the chaotic hypersensitivity to perturbations.

In summary, by studying one of the most important mo
els in quantum chaos, a fully chaotic billiard system, w
have shown that for a wide range of parameters,
Loschmidt echo decays exponentially with a rate given

FIG. 4. M (t) as a function of the rescaled timejt for k0550
and j50.019, 0.038, 0.057, and 0.075. The dotted line gives
decayM (t)5exp(2Gt/2).
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the Lyapunov exponent of the classical system. Moreo
we have discussed the onset of this Lyapunov regime
quires thatl.G/2. In the opposite situation, the presence
an exponential controlled byG, even in the absence of
generic perturbation described by the FGR, demands fur
studies to fully interpret the detailed mechanism controll
this regime. We finally remark that theM (t) would behave
much differently for intrisically quantum initial conditions
For an eigenstate ofH one finds a decay described by a FG
and it does not show a crossover into the Lyapunov de
@14#. In the other quantum extreme, an initial state genera
from the long time evolution of a semiclassical wave pac
@20#, we find a preparation time dependent Gaussian de
@21#. These issues have begun to receive much attention@22#
due to their strong connection with quantum computing s
et
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bility, decoherence in waves, and quantum-classical tra
tion. Furthermore, the dephasing time observed in trans
experiments in mesoscopic devices shows a perturbation
dependent rate@9#. So far, there is no consensus about t
physical phenomenon causing it. Since the time scaletf

measured by the LE is a decoherence time and our met
ology can obviously be adapted to treat the transport prob
@2#, our results open a rich field for exploration: the conne
tion of both time scales.
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